
Predictable Success

Wei-Chun Chou
weichun@synopsys.com

4-4-2007

JupiterXT Timing Budgeting

R&D: Vasiliki Chatzi, Vineet Gupta
Moderator: Sandy Hsu

© 2007 Synopsys, Inc. (2)
Predictable Success

Wei-Chun Chou

JupiterXT™ Hierarchical Flow Overview

2 nS

Logical
Partitioning,

Plangroup
Creation

Simultaneous
Standard Cell
Hard Macro

Placement

IPO
Clock Planning
Global Route

Route-Based
Pin Assignment,

Budgeting,
and

Commit Soft
Macro

Power Network
Synthesis &

Analysis

Main objective: create good floorplan with pin locations
and timing constraints for block implementation

Plangroup: physical representation for logic hierarchy

© 2007 Synopsys, Inc. (3)
Predictable Success

Wei-Chun Chou

Outline

• Budgeting overview

• Pre-budgeting flow

• Budgeting flow

© 2007 Synopsys, Inc. (4)
Predictable Success

Wei-Chun Chou

Why Budgeting?

• In hierarchical design methodology, budgeting

generates SDC timing constraints for block-level

implementation

� Good budgeting inputs generates SDC with good quality

• No over-constrained, or under-constrained SDC

� Good SDC achieves good implementation of blocks

• Early detection of feasibility of top-level timing closure

© 2007 Synopsys, Inc. (5)
Predictable Success

Wei-Chun Chou

What is Budgeting?

• Budgeter determines input and output delays by
analyzing delays of interblock timing arcs

• Budgeter does not modify timing, only distributes
slacks among blocks: budget allocation

BLOCK A BLOCK B

The process of distributing positive and negative
slack and creating block-level budget SDC files

© 2007 Synopsys, Inc. (6)
Predictable Success

Wei-Chun Chou

Hard Block B
Delay = 2.5 (fixed)

Proportional Budget Allocation
Positive Slack

QD QD

Block A SDC file :

set_output_delay 7.2 –clock CLK [get_ports A_out]

output_delay = 2.5 + 0.5 + 4.2 = 7.2

Block C SDC file:

set_input_delay 7.8 –clock CLK [get_ports C_in]

input_delay = 4.8 + 2.5 + 0.5 = 7.8

Delay = 0.5 (fixed)

CLK CLK

Block A: Delay = 4
Budget = 9 (4/7.5) = 4.8

Block C: Delay = 3.5
Budget = 9 (3.5/7.5) = 4.2

Budget = Total Budgetable Delay * Block Delay Percentage

CLK cycle time = 12

Total budgetable delay = 12 – 2.5 - 0.5 = 9

Original slack = 9 – 4 – 3.5 = 1.5

Budget slack = 9 – 4.8 – 4.2 = 0 Top-level delay is fixed delay

C
A_out C_in

© 2007 Synopsys, Inc. (7)
Predictable Success

Wei-Chun Chou

Hard Block B
Delay = 2.5 (fixed)

Delay = 0.5 (fixed)

Proportional Budget Allocation
Negative Slack

QD QD

Block A SDC file :

set_output_delay 6 –clock CLK [get_ports A_out]

output_delay = 2.5 + 0.5 + 3 = 6

Block C SDC file:

set_input_delay 9 –clock CLK [get_ports C_in]

input_delay = 6 + 2.5 + 0.5 = 9

CLK C CLK

Block A: Delay = 8
Budget = 9 (8/12) = 6

Block C: Delay = 4
Budget = 9 (4/12) = 3

CLK cycle time = 12

Total budgetable delay = 12 – 2.5 - 0.5 = 9

Original slack = 9 – 8 – 4 = -3

Budget slack = 9 – 6 – 3 = 0

Budget = Total Budgetable Delay * Block Delay Percentage

Top-level delay is fixed delay

A_out C_in

© 2007 Synopsys, Inc. (8)
Predictable Success

Wei-Chun Chou

Budget Allocation Approaches

• Traditional approach:

� Allocate budget proportionally to existing block delay

• Advanced approach:

� Allocate budget proportionally to block delay based on virtual IPO
result

• Virtual IPO: only estimate IPO effect without actually changing netlist

• User-defined approach:

� Specify percentage or fixed budget per block or per clock

• Budgets can be further tightened or relaxed in block
implementation using a command:

� set_context_margin

• Give margin for early netlist

© 2007 Synopsys, Inc. (9)
Predictable Success

Wei-Chun Chou

• Critical path budgeting

� JXT budgeter computes budgets (the delay constraint for each IO pin)
using only the worst path `

• More efficient than all path budgeting

• Achieve the same timing optimization QoR as all path budgeting

• Example: for input A, for clock clk, 4 delay constraints are generated:

� set_input_delay d1 –max –rise –clock clk –add_delay {A}

� set_input_delay d2 –min –rise –clock clk –add_delay {A}

� set_input_delay d3 –max –fall –clock clk –add_delay {A}

� set_input_delay d4 –min –fall –clock clk –add_delay {A}

• Delay d1 will be based on the worst path of max/rise condition, etc

• All path budgeting

� Considers all the paths through the IO pins to create the constraints,
which takes more memory with longer run-time

Critical Path Budgeting

© 2007 Synopsys, Inc. (10)
Predictable Success

Wei-Chun Chou

Create Synopsys Design Constraints (SDC)

• Budgeting outputs all SDC constraints required to
fully describe the timing environment for blocks

� Delay setting for IO (budget allocation)

• set_input_delay, set_output_delay

� Load/drive setting for IO

• set_load, set_drive, set_driving_cell

� Operating condition setting

• set_operating_conditions

� Timing exception setting

• set_false_path, set_multicycle_path, set_disable_timing

� etc…

© 2007 Synopsys, Inc. (11)
Predictable Success

Wei-Chun Chou

Set Load/Drive for IO Pins (Ports)

• set_driving_cell -lib_cell BUF {IN}

� Use the actual cell driving IN port at the top level

• set_load –pin_load 1 IN

� Total pin load and driven by the same IN’s driver outside of block A

• set_load –pin_load 10 –wire_load 20 OUT

� Total pin load and wire load driven by OUT port outside of block A

• set_input_transition 0.5 IN

� Measure the slew at the input of IN’s driver

QD

QD
QD

set_driving_cell

set_load –pin_load
set_load –pin_load

set_load –wire_load

set_input_transition

IN

CLK

BUF

OUT

20pf

10pf

1pf

0.5ns

Block A

© 2007 Synopsys, Inc. (12)
Predictable Success

Wei-Chun Chou

Achieve Accurate Budgeting

• More accurate timing, more accurate IO budgets

� Need timing optimization and clock planning

• More accurate pin location, more accurate wire
capacitance estimation through IO pins

� Need pin assignment

• Better IO budgets & wire capacitance, better SDC

� Ensure better block implementation

� Easier to close top-level timing after implementing
blocks

Quality of budgeting depends on quality of inputs

© 2007 Synopsys, Inc. (13)
Predictable Success

Wei-Chun Chou

Steps To Achieve Accurate Budgeting

• Make timing more correlated to optimized design

� Placement & legalization

� High-fanout net synthesis

� Full-chip in place optimization

� Top-level clock tree planning

• Assign pin locations to well estimate wire capacitance
through IO pins for each block

� Plangroup-aware global routing

� Pin-cutting (pin assignment based on global route)

Pre-budgeting flow: complete all the above steps

© 2007 Synopsys, Inc. (14)
Predictable Success

Wei-Chun Chou

P
re
-B
u
d
g
et
in
g

B
u
d
g
et
in
g

Plangroup

HFN

Clock SDC

Pin location

Block SDC

Soft macros

In Place Optimization

Top-Level Clock Planning

Pin-Cutting

High-Fanout Net Synthesis

Timing Budgeting

Check Timing Environment

Placement and Legalization

Plangroup Creation

Check Budgeting Result

Commit Hierarchy

Plangroup-Aware Global Route

fphOptimize

fphTcp

fphAnalyzeRouting

fphFanoutSetup

fphTimingBudgeting

fphCheckTimingEnvironment

fphPlaceDesign

axgHierPlan

check_budget_result

fphCommitHierarchy

axgGlobalRoute

JupiterXT Pre-Budgeting & Budgeting Flow

Flow: plangroup budgeting Commands Results

© 2007 Synopsys, Inc. (15)
Predictable Success

Wei-Chun Chou

Budgeting for Prototyping

• Budgeting can be run at any stage after plangroups

are created and top-level SDC is loaded

• Budgeting for prototyping

� Budgeting is run before completion of pre-budgeting flow

� Quickly get the idea of budgeting result, not for accuracy

© 2007 Synopsys, Inc. (16)
Predictable Success

Wei-Chun Chou

Timing Budgeting Flow

Assign Black Box Pins

Import Black Box Verilog

Create LM view or HTV

Assign Soft Macro Pins

Timing Budgeting Flow Create Black Box FRAM & LM

Budgeting for Soft Macros & Black Box

• Soft macro & black box budgeting

� Special case other than recommended plangroup budgeting

� Prerequisite

• Create pin location on lower level CEL view

• Create timing model (LM or HTV) for the delay of black box or soft macro

© 2007 Synopsys, Inc. (17)
Predictable Success

Wei-Chun Chou

Budgeting for Multiple Instantiated Module

• Budgeting based on the worst case between MIMs

� Specify set_input(output)_delay using the path with worst slack

• If slacks are the same, it chooses the path with worst budget

� Specify set_driving_cell using the weakest driver

� Specify set_load using the biggest load

� Generate one SDC for one MIM master

• Recommended prerequisite

� Commit MIMs to become the same soft macro

� Run MIM pin assignment

QD QDQD QD QDQD

MIM 1 MIM 2weakest biggest

Slack: 2ns Slack: 4ns

© 2007 Synopsys, Inc. (18)
Predictable Success

Wei-Chun Chou

Budgeting Based On Crosstalk Effect

• Do budgeting using noise-induced delay

� Click on “Enable Crosstalk Effects” in atTimingSetup

• Timer will estimate coupling effect based on congestion map

• Store top-level xtalk effect for block implementation

� fphSetIntParam "budgeting" “enable_hier_si" 1

• Budgeter will store effective aggressor driving strength for input pins and
coupling cap across block boundary into block CEL view

effective driving strength

Cc1

Store into block MW CEL view

QD

Cc2 Cc3

© 2007 Synopsys, Inc. (19)
Predictable Success

Wei-Chun Chou

Outline

• Budgeting overview

• Pre-budgeting flow

� Placement legalization

� High-fanout net synthesis

� In place optimization

� Top-level clock tree planning

� Plangroup-aware global route

� Pin-cutting

• Budgeting flow

© 2007 Synopsys, Inc. (20)
Predictable Success

Wei-Chun Chou

Placement Legalization

• Create placement and legalized all cells

• Why needed for budgeting:

� Non-legalized placements give less accurate wire lengths

• Wrong wire lengths generate incorrect RC values

• Timing will be approximate, budgets will also be approximate

• Commands:

� fphPlaceDesign, fphShapeDesign

© 2007 Synopsys, Inc. (21)
Predictable Success

Wei-Chun Chou

High-Fanout Net Synthesis

• Create buffer trees for high-fanout nets

• Why needed for budgeting:

� Reasonable wire and pin loads are created for pin on high-fanout
nets in the budgeted SDC file

• Command:

� fphFanoutSetup

• Alternative: no actual synthesis, use parameters to estimate

� fphSetIntParam "budgeting" "fanout_load_control" 1

• Turn on estimation, using max limit set by the following:

� fphSetIntParam "budgeting" "max_fanout_number” <number>

� fphSetRealParam "budgeting" "max_wire_load" <number>

� fphSetRealParam "budgeting" "max_pin_load“ <number>

© 2007 Synopsys, Inc. (22)
Predictable Success

Wei-Chun Chou

In Place Optimization (IPO)

• Perform buffering and sizing to improve timing

• Why needed for budgeting:

� Timing violations should not be more than 20% cycle time

• If not, budgeter will produce hard-to-meet constraints

� Use IPO to get reasonable timing delays

• The budgeter will produce more reasonable constraints

• Command:

� fphOptimize

• Alternative: advanced mode budgeting

� Virtual IPO estimates IPO effect on design without changing netlist

© 2007 Synopsys, Inc. (23)
Predictable Success

Wei-Chun Chou

Top-Level Clock Tree Planning (TCP)

• Perform top-level clock tree planning:

� Estimate plangroup-level clock tree

• Insert anchor cell as tree root, run CTS

� Implement top-level clock tree

• Define anchor cell input as sync pin, run top-level CTS

• Determine clock pin location

� Create clock constraints for plangroups

• Why needed for budgeting

� Account for real clock latency for more accurate timing

� Create clock constraints for block-level implementation

• Commands:

� fphClockOptions, fphAddAnchors, fphTcp

© 2007 Synopsys, Inc. (24)
Predictable Success

Wei-Chun Chou

Interface clock net

TOP

clk clk

Plangroup 2

Plangroup 1

TOP

Plangroup 1

Plangroup 2

clk

Sync pin

clk

TOP

Plangroup 1

Plangroup 2

TOP Plangroup 2

Plangroup 1

Anchor cell

Clock Tree Planning Illustration

1

3 4

2

© 2007 Synopsys, Inc. (25)
Predictable Success

Wei-Chun Chou

TCP Create Clock SDC

• fphTcp enables budgeter to generate clock source/network
latency for each clock pin of each plangroup

� Clock network latency:

• Block-level CTS target for clock Insertion delay, for min/max, rise/fall

� E.g. set_clock_latency 2 –max –rise [get_clock CLK]

� Output to ./tcp_output/<plangroup>.tcp.sdc

� Clock source latency:

• Top-level clock insertion delay, for min/max, rise/fall, early/late

� E.g. set_clock_latency 2 –source –max –rise –early [get_clock CLK]

� Output to ./tcp_output/<plangroup>.tcp.source.sdc

• All clock latencies are stored in design milkyway such that
budgeter can read and output the same latency to block
SDC when running budgeting

© 2007 Synopsys, Inc. (26)
Predictable Success

Wei-Chun Chou

Clock Network Latency & Source Latency

TOP

clk

Plangroup 1

Plangroup 2

Source latency

Network latency

© 2007 Synopsys, Inc. (27)
Predictable Success

Wei-Chun Chou

Who Has Clock Network/Source Latency?

• Clocks launching or capturing flops in plangroups

� Have both source and network latencies

• Clocks launching or capturing flops at top level

� Have source latencies only

• For example: a virtual clock to a plangroup

© 2007 Synopsys, Inc. (28)
Predictable Success

Wei-Chun Chou

• For each plangroup, virtual clock created for

describing clock latency outside of the plangroup

� Launching flops of input paths:

• Naming convention: <clock_name>__v__in

� Capturing flops of output paths:

• Naming convention: <clock_name>__v__out

• To minimize the number of virtual clocks

� Only the worst-case clock latency is created for all
input/output pins of plangroups launched/captured by a
virtual clock

TCP Create Virtual Clock for IO Paths

© 2007 Synopsys, Inc. (29)
Predictable Success

Wei-Chun Chou

Source latency

TOP

clk

Plangroup 1

Plangroup 2

in1 out1A

B

C

Network latency

• PG1 Input path in1

� clk__v__in launch flop

A on top-level: has only

source latency in SDC
of PG1

• PG1 output path out1

� clk__v__out (clk2)

capture flop C in PG2:
has both source &

network latency in SDC

of PG1

clk1clk__v__in

clk__v__out

clk2

Virtual Clock Example

Data latency

© 2007 Synopsys, Inc. (30)
Predictable Success

Wei-Chun Chou

• Input and output delay statements should be

expressed with respect to a virtual clock:

set_input_delay 2.722441 -clock [get_clocks {my_clock__v__in}] \

-rise -max -add_delay [get_ports {n856}]

• Exceptions:

� Unsynthesized clocks

� Ports connected to top-level ports.

Virtual Clock for Input/Output Delay
in Block SDC

© 2007 Synopsys, Inc. (31)
Predictable Success

Wei-Chun Chou

Update Timing After TCP

• Before budgeting, full-chip timing analysis must be
run to check if timing is reasonable for budgeting

• After TCP, for timer to see actual clock latency:

� Propagate all clocks

• tcl “set_propagated_clocks [all_clocks]”

• In astTimingSetup, set “Ignore Propagated Clocks” off

� For each block, annotate block-level CTS insertion delay

• load “./tcp_output/JupiterXT.tcp.phasedelay.cmd”

� where anchor cell input is defined as sync pin using
ataDefineSyncPins and block-level clock latency is annotated at the
sync pin

• Note: JupiterXT.tcp.phasedelay.cmd is created by fphTcp

© 2007 Synopsys, Inc. (32)
Predictable Success

Wei-Chun Chou

Plangroup-Aware Global Routing (PAGR)

• Perform full-chip global routing optimizing for crossing
plangroup boundary (one net only route cross once)

• Why needed for budgeting:

� Compared to virtual route, global route gives more accurate RC,

hence, more accurate timing

� Prerequisite of pin-cutting which creates pin locations for more
accurate wire capacitance in SDC

• Command:

� axgGlobalRoute or axgProtoRoute + global route option

� axSetIntParam "route" "readPlanGroup" 1

© 2007 Synopsys, Inc. (33)
Predictable Success

Wei-Chun Chou

Pin-Cutting

• Allocate pin locations on PAGR topology for each

plangroup

• Why needed for budgeting:

� Before pin-cutting, pins are at center of plangroup

� After pin-cutting, pins got assigned to actual locations,
leading more accurate timing, and the budgeter can put
more accurate wire capacitance into SDC

• Command:

� fphAnalyzeRouting

© 2007 Synopsys, Inc. (34)
Predictable Success

Wei-Chun Chou

Pin-Cutting Example

© 2007 Synopsys, Inc. (35)
Predictable Success

Wei-Chun Chou

Pre-Budgeting Flow Summary

• Make timing more accurate by:

� Placement & legalization

� High-fanout net synthesis

� Full-chip in place optimization

� Clock tree planning

• Assign pin to actual locations by:

� Plangroup-aware global routing

� Pin-cutting

• Ready for timing budgeting flow

� More accurate budgeting is expected

© 2007 Synopsys, Inc. (36)
Predictable Success

Wei-Chun Chou

Outline

• Budgeting overview

• Pre-budgeting flow

• Budgeting flow

� Check timing environment

� Perform timing budgeting

� Check budgeting results

© 2007 Synopsys, Inc. (37)
Predictable Success

Wei-Chun Chou

Timing Budgeting Flow

• Check timing environment

� astTimingDataCheck
• Check unconstrained paths

� astTimingReport
• Check timing is reasonable for budgeting

� fphCheckTimingEnvironment
• Check feasibility of the design and its timing constraints

• Perform timing budgeting

� fphTimingBudgeting
• Allocate budgets between blocks and create SDC for blocks

• Check budgeting results

� check_budget_result
• Compare actual delay with budgeted delay

© 2007 Synopsys, Inc. (38)
Predictable Success

Wei-Chun Chou

astTimingDataCheck

• Check unconstrained endpoints

� All timing endpoints in the design should be constrained

� If not, may be due to

• SDC error: a clock definition is missing

• or

• Design error: some circuits are disconnected

© 2007 Synopsys, Inc. (39)
Predictable Success

Wei-Chun Chou

astReportTiming

• Check the most violating paths in the design

� Negative slack in the design should be reasonable
compared to the clock period (20% or less), or timing
closure may not be achievable

� Budgeter creates SDC with better quality if timing more
correlates the final optimized implementation

© 2007 Synopsys, Inc. (40)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment

• Provides feedback on design timing

� Helps determine feasibility of the design and its timing

constraints

• Assists in cleaning up constraint issues

� High quality constraints generated by budgeting

• Exposes other design problems

� E.g. dangling hierarchical pins

© 2007 Synopsys, Inc. (41)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment GUI

Unbudgetable pins:

unconnected,

unconstrained,

tie-high/tie-low,

clock, static logic,

fix delay

Exception pins:
set_false_path,

set_multicycle_path,

set_min_delay

set_max_delay

Static pins:
set_case_analysis

set_logic_one

set_logic_zero
Delay Violating Cells
Top level cells (on interface paths) with delays greater than
specified percentage of capture clock period.
Bottleneck Cells
Print the leaf cells which contribute to multiple timing violations

Highlight in
Layout GUI

Select report to view

Select to apply

© 2007 Synopsys, Inc. (42)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment:
Budgeting Report (I)

• Clocks, Clock Properties

� Reports the clock name, driver pin, period
and edges (rising and falling) of the clock.

� Report clock latency, uncertainty,
propagated and generated Clocks.

• Note: Check that clock definitions were read in
correctly

• Block Pin Stats

� Prints the number of budgetable, unbudgetable and total
number of pins on the block.

• High number of un-budgetable pins points to design problems

© 2007 Synopsys, Inc. (43)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Budgeting Report (II)

• Unbudgetable Pins

Report why pins cannot be budgeted:

� Pin is not connected to a net

� Pin is not connected to a top level net, but connected
to an internal net

� Pin is not connected to an internal net, but
connected to a top level net

� Pin on paths with endpoints that are not constrained

� Pin is a clock port

� Pin is connected to power/ground net, or has set_case_analysis on it

� Only fixed delay exists on one side of the pin

• Unconstrained Pins

� Report pins with no constrained path going through

© 2007 Synopsys, Inc. (44)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Budgeting Report (III)

• Exception Pins

� List pins with a timing exception applied

� Timing exceptions:

• set_false_path, set_multicycle_path,

• set_min_delay, set_max_delay

• Static Logic Pins

� List pins set to static logic state by

• set_case_analysis, set_logic_one, set_logic_zero

• Delay Violating Cells

� List top-level cells on interface paths with delays greater than
specified percentage of clock period

© 2007 Synopsys, Inc. (45)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Timer Report

• Zero Wire Delay

� Perform zero wire delay timing analysis

� Report the paths with the negative slack less than the cycle time
percentage specified

� Check if timing can be met without wire delay

• Virtual IPO

� Perform timing analysis based on virtual IPO

� Report the paths with the negative slack less than the cycle time
percentage specified

� Check if timing closure can be achieved by real IPO

• Zero Wire Delay and Virtual IPO will be run in two separate
timing analysis sessions

• Original timing will be restored after reports are done

© 2007 Synopsys, Inc. (46)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Timing Path Highlight

highlighted

selected path

from GUI

© 2007 Synopsys, Inc. (47)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Bottleneck Report

• Bottleneck Cells

� The leaf cells which contribute to multiple timing
violations for entire design

• NOTE: Check these cells for potential problems

• Run Virtual IPO

� Report bottleneck cells based on virtual IPO analysis

• Slack Limit

� Only the paths with slack less than the slack limit will be checked for
locating bottleneck cells

� If set to run virtual IPO, IPO-based timing will be used for slack

• Max Cells

� Maximum number of bottleneck cells to be reported

© 2007 Synopsys, Inc. (48)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Bottleneck Cells – Cross Probing

left button click

highlights object for

cross probing

selected

bottleneck cell

Cost: how many

violated paths

affected by this

bottleneck cell

© 2007 Synopsys, Inc. (49)
Predictable Success

Wei-Chun Chou

fphCheckTimingEnvironment
Recommended Flow

1. Report timing with Zero Wire Delay (if real IPO not run)
• Overview the top-level timing

• Point out potential design problems

2. Report timing with Virtual IPO (if real IPO not run)
• Quick feasibility analysis to show if violating paths are fixable

3. Report Bottleneck Cells
• Report cells contributing to most violating paths

4. Report Block Pin Stats
• Show how many pins can be budgeted

5. Report Unbudgetable Pins

• List unbudgetable pins and show the reason why unbudgetable

6. Run other budgeting reports to analyze plangroup in detail

© 2007 Synopsys, Inc. (50)
Predictable Success

Wei-Chun Chou

Check Timing Environment Summary

• Check timing for entire design

� ataTimingDataCheck
• Check unconstrained paths

� astReportTiming
• Check if timing is reasonable (negative slack < 20% cycle time)

� fphCheckTimingEnvironment with Zero Wire Delay or Virtual IPO
• Check potential design problem affecting timing closure

� fphCheckTimingEnvironment with Bottleneck Cells
• Check for cells contributing multiple timing violations

• Check timing for plangroups

� fphCheckTimingEnvironment with Block Pin Stats or Unbudgetable Pins
• Check for pin status for budgeting per block

• Resolve identified problems before budgeting

© 2007 Synopsys, Inc. (51)
Predictable Success

Wei-Chun Chou

fphTimingBudgeting

• Three approaches to allocate budgets for blocks

� Traditional approach
• Compute budgets proportionally to existing block delay

� Advanced approach
• Compute budgets proportionally to block delay based on virtual IPO

� Set user-defined budgets

• Create SDC for each block

� Set input/output delay

� Set driving cell for input ports

� Set load for input/output ports

� Set input transition for the driver of input ports

� Set operating conditions

� Set timing exceptions

© 2007 Synopsys, Inc. (52)
Predictable Success

Wei-Chun Chou

fphTimingBudgeting GUI
Approach: traditional or advanced

VIPO effort: advanced approach only
high: 2 loops, low: 1 loop

Budgeting for max/min corner
Turn on/off user-defined budgets

Use cap multiplier to scale load in SDC

Specify Black Box for budgeting
BB is Fixed Delay Cell if not specified

Specify PG/SM as Fixed Delay Cells
Actual delay allocated

Still output SDC for Fixed Delay Cells

Directory for SDC
Filename for SDC: master or Instance

Set master by default if detect MIMs
Load SDC to CEL

Create QTM for PGs or SMs

Based on budgets, perform quick

top-level timing analysis before real

block implementation

© 2007 Synopsys, Inc. (53)
Predictable Success

Wei-Chun Chou

• Budgeter run virtual IPO to estimate possible timing

improvement at later stage

� Calculate buffering and sizing effects on timing virtually in
memory without actually changing the netlist

� Apply on design with bad initial timing to achieve more
reasonable budgeting

• Budgeter allocates budget proportionally to the delay

estimated by virtual IPO

• No need to run IPO prior to this step

Advanced Budgeting Approach

© 2007 Synopsys, Inc. (54)
Predictable Success

Wei-Chun Chou

Hard Block B
Delay = 2.5 (fixed)

Advanced Budgeting Example

QD QD

Block A SDC file :

set_output_delay 5.5 –clock CLK [get_ports A_out]

output_delay = 2.5 + 0.5 + 3 = 5.5

Block C SDC file:

set_input_delay 9 –clock CLK [get_ports C_in]

input_delay = 6 + 2.5 + 0.5 = 9

Delay = 0.5 (fixed)

CLK CLK

Block A: Delay = 10 => 2
Virtual Budget = 9 (2/(2+1)) = 6

CLK cycle time = 12

Total budgetable delay = 12 – 2.5 - 0.5 = 9

Original slack = 9 – 10 - 1 = -2

Virtual IPO slack = 9 – 2 – 1 = 6

Virtual budget slack = 9 - 9 = 0
Top-level delay is fixed delay

C

Block C: Delay = 1
Virtual Budget = 9 (1/(2+1)) = 3

Virtual IPO estimates block A can be optimized to 2ns

A_out C_in

© 2007 Synopsys, Inc. (55)
Predictable Success

Wei-Chun Chou

• Block-based user-defined budgets

� For each block, specify the budget as a
fixed delay or % of total budgetable delay

� Specify the block name

� Click on “Add Block User Budget”

• Clock-based user-defined budgets

� For each clock, specify the budget as a
fixed delay or % of total budgetable delay

� Specify the clock name

� Click on “Add Clock User Budget”

• If user-defined budgets plus top-level
delay exceed clock cycle time

� User-define budget is not used

� Normal proportional budgeting is used

User-Defined Budgets

© 2007 Synopsys, Inc. (56)
Predictable Success

Wei-Chun Chou

Hard Block B
Delay = 2.5 (fixed)

User-Defined Budget Example:
Block-Based Percentage

QD QD

Block A SDC file :

set_output_delay 8.4 –clock CLK [get_ports A_out]

output_delay = 2.5 + 0.5 + 5.4 = 8.4

Block C SDC file:

set_input_delay 6.6 –clock CLK [get_ports C_in]

input_delay = 3.6 + 2.5 + 0.5 = 6.6

CLK C CLK

Block A
Budget = 9 * 0.4 = 3.6

Block C
Budget = 9 * 0.6 = 5.4

Budget of Block A = 40% * Total Budgetable Delay
Budget of Block C = 60% * Total Budgetable Delay

CLK cycle time = 12

Total budgetable delay = 12 – 2.5 - 0.5 = 9

Delay = 0.5 (fixed)

A_out C_in

© 2007 Synopsys, Inc. (57)
Predictable Success

Wei-Chun Chou

set_context_margin

• Tighten or relax the input/output delay constraints created by
the budgeter in block implementation

� Based on user’s design knowledge to each IO requirement

� Give more flexible budget control per IO pin for early netlist

• It is a TCL command, usage:

set_context_margin

• [-percent] (consider specified value as a percentage of the delay)

• [-relax] (relax instead of tightening the constraints)

• [-min] (specify the margin for hold constraints)

• [-max] (specify the margin for setup constraints)

• value (determine the margin in absolute or percentage value)

• [list] (indicate a list of cells or pins)

© 2007 Synopsys, Inc. (58)
Predictable Success

Wei-Chun Chou

Warnings During Budgeting

• Warnings point out fundamental timing problems in
the design

• Warnings may indicate that timing closure is not
possible using block-level optimization

• Example
� WARNING : Total fix delay (350.356) is greater than required time

(330.843), I/O delay will be adjusted for port `portA' in cell `BlockA'.

� Source of problem: primary input pin with input delay greater
than clock cycle defined in SDC

© 2007 Synopsys, Inc. (59)
Predictable Success

Wei-Chun Chou

Debug Variable – Input/Output Delay

• Find the timing path used in budgeting:

� fphSetIntParam “budgeting” “debug_level” 1

• In SDC, before each set_input(output)_delay, it

prints start point and end point of the corresponding

worst path used for allocating budgets, as a

comment

� Use timing report to check full path

© 2007 Synopsys, Inc. (60)
Predictable Success

Wei-Chun Chou

check_budget_result

• Post-budgeting analysis:

� Report and compare the actual and budgeted path
delays on the interface paths for each block

• Flop-to-flop paths in blocks will not be reported

• It is a TCL command, usage:

check_budget_result

• [-block_name string] (name of one block instance)

• [-pin_name string] (name of one pin on block instance)

• file name (name of output report file)

• Must be run during the same session in which
budgeting is run

© 2007 Synopsys, Inc. (61)
Predictable Success

Wei-Chun Chou

Post-Budget Analysis Report

Timing path starting point: I_TOP/I_RISC_CORE/\I_INSTRN_LAT_Crnt_Instrn_1_reg[2]/CP

Real Delay Type Budget Delay

========== ==== ============

I_TOP/I_RISC_CORE/\I_INSTRN_LAT_Crnt_Instrn_1_reg[2]/CP 0.00000 0.00000

I_CK_GEN/I_TOP/net_risc_Xecutng_Instrn[2]__pft 0.95766 2.34900

I_CK_GEN/I_TOP/net_risc_Xecutng_Instrn[2]__pft1 <-- 0.00520 fixed 0.00520

I_TOP/I_PARSER/\i_reg_reg[4]/D 0.41727 1.02352

Timing path ending point: I_TOP/I_PARSER/\i_reg_reg[4]/D

End Point Skew: 0.25178 Path delay : 1.38013 Required Time : 3.37772 Fixed
Delay : 0.00520

QD

C

I_RISC_CORE I_CK_GEN I_PARSER

QD

0.0052 fixed

1.02352

0.417270.95766

2.34900

Real Delay

Budget Delay

© 2007 Synopsys, Inc. (62)
Predictable Success

Wei-Chun Chou

Summary

• Budgeting is to generate SDC for implementing
blocks in hierarchical flow

� During timing analysis and SDC creation, budgeter can
early detect the feasibility of timing closure

• Budgeter needs pre-budgeting flow to achieve good
estimation for budgeting

� Quality of budgeting depends on quality of inputs

• Users run budgeting flow to check budgeting
environment, invoke budgeter to create SDC, and
check final budgeting results

© 2007 Synopsys, Inc. (63)
Predictable Success

Wei-Chun Chou

Thank You

